Improving the Performance of Creep-Strength-Enhanced Ferritic (CSEF) Steels

Yukinori (Yuki) Yamamoto¹ Mike Santella^{1*} Sudarsanam (Suresh) Babu² Xinghua Yu²

 Oak Ridge National Laboratory (*retired in Dec. 2011)
 The Ohio State University

April 19, 2012
26th Annual Conference on Fossil Energy Materials
Pittsburgh, PA

Acknowledgements

- Department of Energy, Office of Fossil Energy
- Dr. Pete Tortorelli, ORNL
- Allan Frederick, Jeff McNabb, and Jeremy Moser, ORNL for technical support
- Dr. Fujio Abe, NIMS, Japan
- Informal collaborations continue with ASME, boiler manufacturers, and EPRI

Estimated <u>CSEF</u> needs for construction of a High-Efficiency Boiler

- Headers & piping
 - P91/P92 1,000,000 lbs
- Boiler tubing
 - T23, T91, T92 Alloy Grades 2,600,000 lbs

Images courtesy of The Babcock & Wilcox Company, www.babcock.com

Purpose is to build fundamental understanding needed to maximize performance of <u>CSEF</u> steels

- Activities combine basic & applied R&D with strong power industry interactions
- Specific goals include:
 - Improving the structural performance of (9-12)Cr-Mo steels
 - Provide science-based guidelines for maximizing safe operating temperatures
 - Understand the fundamental causes of current temperature limitations
 - Causes of Type IV failures
 - Possible ways of minimizing/eliminating Type IV failures

Long-time weldment properties may not meet projections from short-time data

- Type IV failure is due to weakened microstructures in HAZs
- Weld Strength Factors (WSF = $\sigma_{\text{weld}} / \sigma_{\text{base metal}}$) for CSFE steels can be as low as 0.5 at ~600°C.
- Unpredictable behavior that causes unplanned outages, concerns about reliability & safety, more aggressive inspection procedures

Type IV failures depend on gradients of microstructures/properties in weld HAZs

- <u>Post Weld Heat Treatment (PWHT)</u> is applied to temper HAZ/ weld metal.
- Type IV failures take place at FG/ICHAZ, even after PWHT.

Approach to improved CSEF steels relies on two strategies

1. Modified heat treatments:

- Could be effective with <u>existing alloys</u>
- Implementation could be straightforward
 - ASME Code approval required

2. Modified alloys:

- Newly developed alloys appear more resistant to Type IV behavior
- Limited experience with welding
 - Behavior is not understood

- Martensitic matrix with M₂₃C₆ and MX
- Prior austenite grain size is from 15 to 30 microns

Contents of this presentation

1. Modified heat treatments (Gr 91):

- Characterization/creep test results of PWHT samples (ORNL/OSU)
- In-situ diffraction study of HAZ simulated samples (OSU)

2. Modified alloys (Gr 92):

Creep test results of Experimental 9Cr steel (ORNL/NIMS)

Table: Chemical composition of the alloy studies

(wt%)	Fe	С	Mn	Si	Cr	W	Мо	Ni	Со	V	Nb	N	В
Gr 91	Bal.	0.08	0.27	0.11	8.61	-	0.89	0.09	-	0.21	0.07	0.06	<0.001
Gr 92	Bal.	0.09	0.47	0.16	8.72	1.87	0.45	-	-	0.21	0.06	0.05	0.002
N130B	Bal.	0.08	0.49	0.30	8.97	2.87	-	-	2.91	0.18	0.05	0.002	0.013

Modified temper-PWHT concept is being comprehensively revaluated (FY10~)

Sample Preparation Sequence

Sample IDs are described such as 650T/760 or 760T/760

- ✓ Mechanical property screening (tensile, hardness, and creep testing)
- Metallography

Improved Tensile Properties for Lower Preweld Tempering Temperature

650T/760 showed higher strength and better ductility than 760T/760

Different Hardness Distribution in HAZ after PWHT

Distinct soft zone and wide hardness range in 760T/760 specimen

Coarsening of Carbides Trigger Softening

Coarser M₂₃C₆/MX were observed in 760T/760.

Lower tempering temperature shifted fracture locations to base metal

Fracture behavior transition between 700/650°C

Creep-rupture lives also showed transition

- At 600°C/120MPa: need further considerations

In-situ diffraction study of HAZ simulated samples (OSU)

Motivation: To understand the mechanism of tempering temperature dependence of softening after PWHT.

Output: Dissolution, Nucleation, and Growth of M₂₃C₆ during heating and cooling process explain the variety of microstructure (and properties).

Synchrotron diffraction experiments can capture the transformation dynamics

- Tested two different tempered samples (at 650 and 760°C), at SP8, Japan (by X. Yu and S. Babu, OSU)
- Much higher time resolution than conventional XRD

M₂₃C₆ dissolved above A_{C3} temperature, but MX remained after cooling

(Tempered at <u>760°C</u>, Peak temperature = <u>1050°C</u>)

Contrast of M₂₃C₆ after peak temperature is very weak.

Base metal

Both M₂₃C₆ and MX remained after cooling

Lower peak temperature formed residual M₂₃C₆.

No obvious M₂₃C₆ observed before and after testing

(Tempered at <u>650°C</u>, Peak temperature = <u>950°C</u>)

• The amount of M₂₃C₆ is lower than the detection limit.

Residual M₂₃C₆ due to insufficient heating

(Tempered at <u>760°C</u>, Peak temperature = <u>950°C</u>)

The M₂₃C₆ formation mode during PWHT at 760°C:

in T760°C: coarsening of residual M₂₃C₆

in T650°C: nucleation and growth (fine precipitate)

Low temperature pre-weld tempering can minimize the formation of coarse M₂₃C₆

Table: Microstructure evolution at fine grain heat affected zone

 \bullet : $M_{23}C_6 \bullet$: MX

Creep test of Experimental 9Cr steel (ORNL/NIMS)

Table: Chemical composition of the alloy studies

(wt%)	Fe	С	Mn	Si	Cr	W	Мо	Ni	Со	V	Nb	N	В
N130B	Bal.	0.08	0.49	0.30	8.97	2.87	-	-	2.91	0.18	0.05	0.002	0.013
Gr 92	Bal.	0.09	0.47	0.16	8.72	1.87	0.45	-	-	0.21	0.06	0.05	0.002

Improved HAZ behavior in modified 9Cr steel

- The B addition resulted in sluggish austenitization (from diffraction study at APS, ORNL).
- No fine grain formation was due to stabilization of M₂₃C₆ (NIMS).

Specimens simulated HAZ (P92/N130B)

Improved creep properties in N130B

Microstructure characterization is required for better understanding.

Summary

1. Modified heat treatments (Gr 91):

- Lower pre-weld tempering temperature can improve mechanical properties (Better tensile strength/ductility, 5x longer rupture life at 650°C/70MPa)
- Control of M₂₃C₆ dissolution/precipitation is the key to improve the mechanical properties of weld 9Cr steels

2. Modified alloys:

 Eliminating FGHAZ has a potential to avoid type IV failure (Improved creep properties of the N and B modified steel)

Future plan:

- Complete characterization of creep-rupture specimens
- Propose new processing route/ alloy compositions based on the current results
 - Higher strength, better oxidation resistance, and type IV failure resistance

RIDGE
National Laboratory

FY11 Milestones & Status:

- Complete tensile testing of 'best' plates
 - Status: Met
- Initiate long-term creep-tests of welded joints
 - Status: Met
- Evaluate aged microstructures and issue a technical paper/report on current state of studies
 - Status: Delayed until FY12 (scheduled July 31, 2012).
- Evaluate initial creep-test results, determine progress
 - Status: Met

FY12 Milestones & Status:

- Characterize cross-weld specimens of 9Cr steel weldments subjected to non-standard heat treatments
 - Status: Met
- Evaluate creep-test results of synchrotron diffraction specimens
 - Planned May 31, 2012
- Produce a publication on initial results of microstructure characterization of creep specimens from modified heat treatment study (in collaboration with OSU)
 - Planned July 31, 2012
- Initiate production of experimental heats of new, advanced creep strength enhanced ferritic steels with resistance to type IV cracking
 - Planned September 30, 2012

