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Estimated CSEF needs for construction of
a High-Efficiency Boiler

* Headers & piping
— P91/P92 - 1,000,000 Ibs
* Boliler tubing

Images courtesy of The Babcock & Wilcox Company,
www.babcock.com



Purpose is to build fundamental
understanding needed to maximize
performance of CSEF steels

* Activities combine basic & applied R&D with strong power industry
interactions

« Specific goals include:
— |mproving the structural performance of (9-12)Cr-Mo steels

— Provide science-based guidelines for maximizing safe operating
temperatures

— Understand the fundamental causes of current temperature
limitations

 Causes of Type IV failures
* Possible ways of minimizing/eliminating Type IV failures



Long-time weldment properties may not
meet projections from short-time data

Base HAZ Weld ,
Metal Metal Type 1V failure

* Type IV failure is due to weakened microstructures in HAZs

» Weld Strength Factors (WSF = 6,4/ Gpase metal) fOr CSFE steels can
be as low as 0.5 at ~600°C.

« Unpredictable behavior that causes unplanned outages, concerns
about reliability & safety, more aggressive inspection procedures



Type 1V failures depend on gradients of
microstructures/properties in weld HAZs
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* Post Weld Heat Treatment (PWHT) is applied to temper HAZ/
weld metal.
* Type IV failures take place at FG/ICHAZ, even after PWHT.
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Approach to improved CSEF steels relies
on two strategies

1. Modified heat treatments:
— Could be effective with existing alloys

— Implementation could be stralghtforward
» ASME Code approval required AR

2. Modified alloys:

— Newly developed alloys
appear more resistant to
Type IV behavior

— Limited experience with
welding
* Behavior is not understood

Magn Det W =
: 1376x SE 13.

. Martensmc matrlx W|th M23C6 and MX
* Prior austenite grain size is from 15 to 30 microns




Contents of this presentation

1. Modified heat treatments (Gr 91):

— Characterization/creep test results of PWHT samples
(ORNL/OSU)

— In-situ diffraction study of HAZ simulated samples (OSU)
2. Modified alloys (Gr 92):
— Creep test results of Experimental 9Cr steel (ORNL/NIMS)

Table: Chemical composition of the alloy studies

W% Fe C Mn Si C W Mo N Co V Nb N B
Gr91 Bal. 008 027 011 861 - 089 009 - 021 007 006 <0.001
Gr92 Bal. 009 047 016 872 187 045 - - 021 006 005 0.002

N130B Bal. 008 049 030 897 287 - - 291 018 0.05 0.002 0.013




Modified temper-PWHT concept is being
comprehensively revaluated (FY10~)

Sample Preparation Sequence

Pre-weld Temper PWHT
(1.5h), °C (4h), °C
800 800
760
Weld with
700 9Cr filler 760
650
Ny (in ASME: 730-800°C) (in ASME: 730-775°C)
(1inch thickness) = ™= Sample IDs are described such as 650T/760 or 760T/760

v" Mechanical property screening (tensile, hardness, and creep testing)
v" Metallography



Improved Tensile Properties for Lower Pre-
weld Tempering Temperature
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« 650T/760 showed higher strength and better ductility than 760T/760



Depth (mm)

Different Hardness Distribution in HAZ
after PWHT
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» Distinct soft zone and wide hardness range in 760T/760 specimen
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Coarsening of Carbides Trigger Softening
650T/760
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* Coarser M,,C,/MX were observed in 760T/760.



Lower tempering temperature shifted
fracture locations to base metal

Pre-weld tempering Tensile tested at 650 C

temperature

(o}
(then PWHT at 760°C) P P

ey 4 X ee O
M~',\{'[.>!‘! 4

 Fracture behavior transition between 700/650°C




Creep-rupture lives also showed transition
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At 650°C/70MPa: Rupture life for “650T/760” = 5X life for “/60T/760”
* At 600°C/120MPa: need further considerations



In-situ diffraction study
of HAZ simulated samples (OSU)

Motivation: To understand the mechanism of tempering temperature
dependence of softening after PWHT.

Output:  Dissolution, Nucleation, and Growth of M,,C, during heating
and cooling process explain the variety of microstructure (and
properties).



Synchrotron diffraction experiments can
capture the transformation dynamics
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* Tested two different tempered samples (at 650 and 760°C), at SP8,
Japan (by X. Yu and S. Babu, OSU)

* Much higher time resolution than conventional XRD



M,,C, dissolved above A.; temperature,

(Tempered at 760°C, Peak temperature = 1050°C)

but MX remained after cooling = |
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» Contrast of M,,C;, after peak temperature is very weak.



Both M_,;C, and MX remained after cooling
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* Lower peak temperature formed residual M,,Cs.



No obvious M,;C, observed before and

after testing
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Residual M,;C, due to insufficient heating

|
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The M,,C, formation mode during PWHT at 760°C:
in T760°C: coarsening of residual M,,C, -
in T650°C: nucleation and growth (fine precipitate) -



Low temperature pre-weld tempering can
minimize the formation of coarse M,;C,

Table: Microstructure evolution at fine grain heat affected zone

Pre-weld temper Weld (at FGHAZ)

High temperature
pre-weld
tempering 4 d
(e.g. 760T/760) A

Low temperature
pre-weld
tempering
(e.g. 650T/760)

(during welding) =mp  (after cooling)

@®: M, ,C, o:MX




Creep test of Experimental 9Cr steel
(ORNL/NIMS)

Table: Chemical composition of the alloy studies

W% Fe C Mn Si C W Mo N Co V Nb N B

N130B Bal. 008 049 030 897 287 - - 291 018 0.05 0.002 0.013

Gr92 Bal. 009 047 016 872 187 045 - - 021 006 0.05 0.002




Improved HAZ behavior in modified 9Cr steel

EBSP Analysis (Inverse Pole Figure Map[001]) A
Weld Microstructure (GTAW Width of HAZ:2.5mm) .
Base metal 1.5mm from Fusion Line [0.5mm from Fusion Line
e
s f, e 8
N130B |E S
(NIMS) (& s
100um : 100um : 100pm
P92 o
(reference) |a
100um —100um__ 100um

*The B addition resulted in sluggish austenitization (from diffraction study at APS, ORNL).
*No fine grain formation was due to stabilization of M,,C, (NIMS).




Specimens simulated HAZ (P92/N130B)
* Specimens with T .., =900 C

(simulated inter-critical HAZ)
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Improved creep properties in N130B

Creep strain, %

Creep curves of HAZ simulated specimens
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P92.  ~10500h
N130B: >14,000h (still running)

Creep-rupture lives of weldments
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* Microstructure characterization is required for better understanding.

N130B weld 1




Summary

1. Modified heat treatments (Gr 91):

— Lower pre-weld tempering temperature can improve mechanical

properties
(Better tensile strength/ductility, 5x longer rupture life at 650°C/70MPa)

— Control of M,,C; dissolution/precipitation is the key to improve the
mechanical properties of weld 9Cr steels

2. Modified alloys:

— Eliminating FGHAZ has a potential to avoid type |V failure
(Improved creep properties of the N and B modified stegl)

Future plan:
« Complete characterization of creep-rupture specimens

 Propose new processing route/ alloy compositions based on the
current results

— Higher strength, better oxidation resistance, and type IV failure resistance |



FY11 Milestones & Status:

» Complete tensile testing of 'best' plates
— Status: Met

* |nitiate long-term creep-tests of welded joints
— Status: Met

- Evaluate aged microstructures and issue a technical paper/report on
current state of studies

— Status: Delayed until FY12 (scheduled July 31, 2012).
« Evaluate initial creep-test results, determine progress
— Status: Met



FY12 Milestones & Status:

* Characterize cross-weld specimens of 9Cr steel weldments subjected
to non-standard heat treatments

— Status: Met
« Evaluate creep-test results of synchrotron diffraction specimens
— Planned May 31, 2012

» Produce a publication on initial results of microstructure
characterization of creep specimens from modified heat treatment
study (in collaboration with OSU)

— Planned July 31, 2012

* |nitiate production of experimental heats of new, advanced creep
strength enhanced ferritic steels with resistance to type IV cracking

— Planned September 30, 2012



